Juniper Networks Certified Internet Professional SP (JNCIP-SP)

Juniper JN0-660

Version Demo

Total Demo Questions: 15

Total Premium Questions: 247

Buy Premium PDF

https://dumpsqueen.com

support@dumpsqueen.com

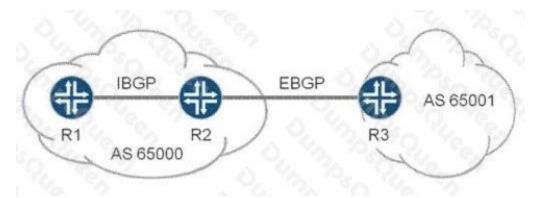
dumpsqueen.com

Topic Break Down

Topic	No. of Questions
Topic 1, Volume A	69
Topic 2, Volume B	69
Topic 3, Volume C	71
Topic 4, Volume D	38
Total	247

QUESTION NO: 1

```
Refer to the exhibit.
user@R1> show isis interface detail
IS-IS interface database:
ge-0/0/4.0
           , State: 0x6, Circuit id: 0x1, Circuit type: 2
  Index:
  LSP interval: 100 ms, CSNP interval: 10 s
  Adjacency advertisement: Advertise
  Level Adjacencies Priority Metric Hello (s) Hold (s) Designated Router
     2
                                 64
                                                                  27 R2.02 (not us)
                                          10
user@R2> show isis interface detail
IS-IS interface database:
ge-0/0/2.0
  Index: , State: 0x6, Circuit id: 0x2, Circuit type: 2
  LSP interval: 100 ms, CSNP interval: 10 s
  Adjacency advertisement: Advertise
  Level Adjacencies Priority Metric Hello (s) Hold (s) Designated Router
user@R3> show isis interface detail
IS-IS interface database:
ge-0/0/2.0
  Index: , State: 0x6, Circuit id: 0x1, Circuit type: 2
  LSP interval: 100 ms, CSNP interval: 10 s
  Adjacency advertisement: Advertise
  Level Adjacencies Priority Metric Hello (s) Hold (s) Designated Router
                                          10
                                                   3.000
                                                                   9 R2.02 (not us)
```


Referring to the exhibit, what are two reasons why R2 and R4 show a different hello interval than R1 and R3? (Choose two.)

- A. R4 is the DIS.
- B. R2 is the DIS.
- **C.** R4 has explicit configuration to set the hello interval to 3 seconds.
- **D.** R2 has explicit configuration to set the hello interval to 3 seconds.

ANSWER: B C

QUESTION NO: 2

Click the Exhibit button.

The exhibit contains a BGP topology. R1 and R2 are peering using IBGP. R2 and R3 are peering with EBGP. R1 is not installing any routes from R3 due to next-hop resolution issues. Which two configurations will resolve this issue? (Choose two.)

- A. Use a policy to advertise the loopback on R2 into the IGP.
- B. Advertise the R2-R3 subnet into the IGP.
- C. Configure advertise-inactive on the IBGP peering session on R2.
- **D.** Configure next-hop self on the IBGP peering session on R2.

ANSWER: B D

QUESTION NO: 3

What are three reasons an OSPF neighbor ship would be stuck in ExStart? (Choose three.)

- A. The LSA database exchange is not yet completed.
- **B.** There is an MTU mismatch between the OSPF routers.
- C. There is an interface-type mismatch between the OSPF routers.
- **D.** There is a unicast communication problem between the OSPF routers.

E. Both OSPF routers are using the same router ID.

ANSWER: BDE

QUESTION NO: 4

Click the Exhibit button.

```
user@router# show routing-options multicast
scope 1 {
  prefix 224.0.1.39/32;
  interface fe-0/0/0.0;
}
```

Referring to the exhibit, which statement is correct?

- A. Only multicasts packets (224.0.1.39) are allowed on the input and output direction.
- **B.** Auto-RP discovery messages are filtered in the input and output direction.
- C. Rendezvous point announcements are filtered in the output direction.
- **D.** This filter does not work because the input or output parameter is missing.

ANSWER: C

QUESTION NO: 5

An LDP Layer 2 circuit is configured for VPN A and VPN

- B. Which three statements are true regarding LDP Layer 2 circuit signaling? (Choose three.)
- A. PE-P LDP sessions use Martini encapsulation.
- B. Which three statements are true regarding LDP Layer 2 circuit signaling? (Choose three.)

PE-PE LDP sessions can be extended or adjacent.

- C. VRF tables are needed on the PEs.
- **D.** TCC encapsulation is needed to interconnect different interface types.
- **E.** The VC type field in the LDP header specifies the encapsulation type.

ANSWER: B D E

QUESTION NO: 6

An OSPF network has been designed with multiple areas to improve scalability. Which two statements are true? (Choose two.)

- **A.** Each router in the OSPF network runs the shortest-path-first algorithm to determine paths through the network.
- B. The Area Border Router for each area runs the shortest-path-first algorithm and floods its results through the area.
- C. Each area must have at least one link connecting it to each of the other areas of the OSPF network.
- D. OSPF provides loop-free routing within an OSPF routing domain, but does not guarantee symmetrical routing.

ANSWER: A D

QUESTION NO: 7

Which authentication method secures IS-IS hello, link-state, and sequence number PDUs?

- A. Level authentication
- B. Interface authentication
- C. Area authentication
- D. Domain authentication

ANSWER: A

QUESTION NO: 8

Given the following regular expression:

.* 14203+(21870110458)

Which two AS paths match? (Choose two.)

- A. 27522 2187010458
- **B.** 27522 14203 14203 14203 21870
- C. 14203 21780 10458
- **D.** 14203 21780 27522

ANSWER: B C

QUESTION NO: 9

Which two configuration parameters are required to configure a BGP-signaled VPLS service? (Choose two.)

- A. vpls-id
- B. site-identifier
- C. route-distinguisher
- D. site-address

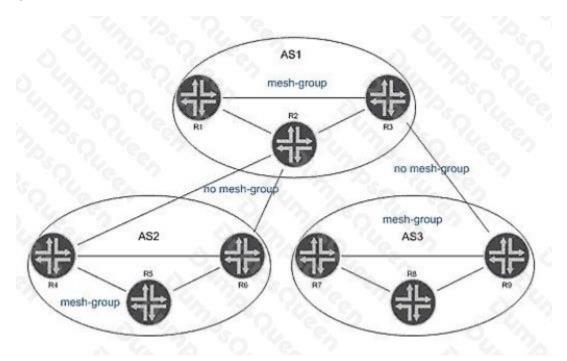
ANSWER: B C

QUESTION NO: 10

Click the Exhibit button.

```
192.168.56.1
 From: 192.168.56.5, LSPstate: Up, ActiveRoute: 0
 LSPname: to-r6, LSPpath: Primary
 LSPtype: Static Configured
  Suggested label received: -, Suggested label sent:
  Recovery label received: -, Recovery label sent: 3
 Resv style: 1 FF, Label in: -, Label out: 3
               -, Since: Tue Feb 22 21:38:36 2011
  Tspec: rate Obps size Obps peak Infbps m 20 M 1500
 Port number: sender 1 receiver 18916 protocol 0
 FastReroute desired
  PATH rcvfrom: localclient
 Adspec: sent MTU 1500
 Path MTU: received 1500
  PATH sentto: 10.10.56.1 (ge-1/0/1.0) 7 pkts
 RESV rcvfrom: 10.10.56.1 (ge-1/0/1.0) 5 pkts
 Explct route: 10.10.56.1
 Record route: <self> 10.10.56.1
    Detour is Up
    Detour Tspec: rate Obps size Obps peak Infbps m 20 M 1500
    Detour adspec: sent MTU 1500
    Path MTU: received 1500
    Detour PATH sentto: 10.10.10.9 (ge-1/0/2.0) 4 pkts
    Detour RESV rcvfrom: 10.10.10.9 (qe-1/0/2.0) 3 pkts
    Detour Explct route: 10.10.10.9 10.10.10.6
    Detour Record route: <self> 10.10.10.9 10.10.10.6
    Detour Label out: 299856
```

Referring to the exhibit, which type of traffic protection mechanism is used for the LSP?


- A. link-protection
- B. fast-reroute

- C. node-link-protection
- **D.** bypass

ANSWER: B

QUESTION NO: 11

Click the Exhibit button.

In the exhibit, all routers within each AS are configured for Anycast RP. All intra-AS routers are configured within the same MSDP mesh group. Inter-AS multicast has been enabled using MSDP without MSDP mesh groups. Which statement is true?

- A. R6 and R7 should have an MSDP peering, because multiple MSDP AS hops are not allowed.
- B. SA messages received from R2 are not forwarded to R5, R7, and R8.
- C. SA messages from R5 are not forwarded to AS1.
- D. Duplicate SA messages may be received in AS2.

ANSWER: D

QUESTION NO: 12

Refer to the exhibit.

```
user@router# show
class-of-service {
     scheduler-maps {
          core {
               forwarding-class best-effort scheduler be;
               forwarding-class network-control scheduler nc;
               forwarding-class expedited-forwarding scheduler ef;
               forwarding-class assured-forwarding scheduler af;
     schedulers {
          be {
               transmit-rate percent 30;
               buffer-size percent 30;
               priority low;
               transmit-rate percent 3;
               buffer-size percent 3;
               priority high;
              transmit-rate {
                    percent 24;
                    exact;
               buffer-size percent 24;
               priority high;
               transmit-rate percent 25;
               buffer-size percent 25;
               priority strict-high;
```

The core scheduler-map is assigned to fe-0/I/0.
The following traffic is queued for transmission from fe-0/1/3:
□ 40 Mbps of best-effort traffic
□ 2 Mbps of network-control traffic
☐ 41 Mbps of expedited-forwarding traffic
□ 30 Mbps of assured-forwarding traffic
Which queue uses the highest amount of interface bandwidth?
A. The best-effort queue
B. The expedited-forwarding queue
C. The network-control queue
D. The assured-forwarding queue
ANSWER: A
QUESTION NO: 13
In an interdomain multicast deployment scenario, RP1 is in AS1 and RP2 is in AS2. MSDP is configured between RP1 and RP2 A source in AS1 and a receiver in AS2 have just become active. What initially triggers RP1 to send source-active messages (SAs) to RP2?
A. A join-to-RP message is sent from RP2 to RP1.
B. A join-to-source message is sent from RP2 to RP1
C. A register message is received on RP1.
D. A register message is received on RP2.
ANSWER: C
QUESTION NO: 14
What is a limitation of LDP?
A. Traffic must follow explicitly configured paths.
B. It requires a full mesh of LSPs throughout the network.
C. It requires a traffic engineering database (TED).
D. It does not support traffic engineering.

Δ	N	SI	Λ	/F	R:	ח

QUESTION NO: 15

You are asked to design a Layer 2 VPN service between service provider networks that needs Ethernet transport capabilities. The VPN should support two or three endpoints. Which Layer 2 VPN technology should you propose?

- A. LDP-signaled VPLS
- B. BGP-signaled VPLS, using the RFC 4448 Layer 2 frame format
- C. LDP Layer 2 circuit, using the RFC 4448 Layer 2 frame format
- D. BGP Layer 2 VPN

ANSWER: B